JVM:

image-20230728164853677

运行过程:

​ Java 源文件,通过编译器,能够生产相应的.Class 文件,也就是字节码文件,而字节码文件又通过 Java 虚拟机中的解释器,编译成特定机器上的机器码 。

① Java 源文件(.java)—->编译器(javac)—->字节码文件(.class)

② 字节码文件(.class)—->JVM—->机器码

1.1线程

​ 这里所说的线程指程序执行过程中的一个线程实体。 JVM 允许一个应用并发执行多个线程。Hotspot JVM 中的 Java 线程与原生操作系统线程有直接的映射关系。 当线程本地存储、缓冲区分配、同步对象、栈、程序计数器等准备好以后,就会创建一个操作系统原生线程。Java 线程结束,原生线程随之被回收。操作系统负责调度所有线程,并把它们分配到任何可用的 CPU 上。当原生线程初始化完毕,就会调用 Java 线程的 run() 方法。当线程结束时,会释放原生线程和 Java 线程的所有资源。

1.2JVM内存区域

image-20230728184623227

JVM内存区域分为:

  • 线程私有区域
    • 程序计数器
    • 虚拟机栈
    • 本地方法区
  • 线程共享区域(JAVA8之前)
    • JAVA
    • 方法区
      • 常量池
  • 直接内存
  1. 线程私有数据区域生命周期与线程相同, 依赖用户线程的启动/结束 而 创建/销毁(在 HotspotVM 内, 每个线程都与操作系统的本地线程直接映射, 因此这部分内存区域的存/否跟随本地线程的生/死对应)。

  2. 线程共享区域随虚拟机的 启动/关闭 而 创建/销毁

  3. 直接内存并不是 JVM 运行时数据区的一部分, 但也会被频繁的使用

image-20230728185217834

1.2.1程序计数器(线程私有)

  • 一块较小的内存空间, 是当前线程所执行的字节码的行号指示器,每条线程都要有一个独立的程序计数器,这类内存也称为“线程私有” 的内存。
  • 正在执行 java 方法的话,计数器记录的是虚拟机字节码指令的地址(当前指令的地址)。如果还是 Native 方法,则为空。

1.2.2虚拟机栈(线程私有)

​ 是描述java方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息。 每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。

1.2.3本地方法区(线程私有)

​ 本地方法区和 虚拟机栈 作用类似, 区别是虚拟机栈为执行 Java 方法服务, 而本地方法栈则为Native 方法服务, 如果一个 VM 实现使用 C-linkage 模型来支持 Native 调用, 那么该栈将会是一个C 栈,但 HotSpot VM 直接就把本地方法栈和虚拟机栈合二为一

1.2.4. 堆(Heap-线程共享)-运行时数据区

​ 是被线程共享的一块内存区域, 创建的对象和数组都保存在 Java 堆内存中,也是垃圾收集器进行垃圾收集的最重要的内存区域。 由于现代 VM 采用分代收集算法, 因此 Java 堆从 GC 的角度还可以细分为: 新生代(Eden 区、 From Survivor 区和 To Survivor 区)和老年代。

1.2.5. 方法区/永久代(线程共享)

​ 即我们常说的永久代(Permanent Generation), 用于存储被 JVM 加载的类信息、 常量、 静态变量、 即时编译器编译后的代码等数据.

​ HotSpot VM把GC分代收集扩展至方法区, 即使用Java堆的永久代来实现方法区, 这样 HotSpot 的垃圾收集器就可以像管理 Java 堆一样管理这部分内存,而不必为方法区开发专门的内存管理器(永久代的内存回收的主要目标是针对常量池的回收和类型的卸载, 因此收益一般很小)。

​ 运行时**常量池(Runtime Constant Pool)是方法区的一部分。 Class 文件中除了有类的版本、字段、方法、接口等描述等信息**外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。 Java 虚拟机对 Class 文件的每一部分(自然也包括常量池)的格式都有严格的规定,每一个字节用于存储哪种数据都必须符合规范上的要求,这样才会被虚拟机认可、装载和执行。

1.3 JVM 运行时内存

java堆可以细分为

  • 新生代——用于存放新生的对象,一般占据1/3堆空间,由于频繁创建对象,所以新生代会频繁触发MinorGC 进行垃圾回收,新生代细分为以下三个区域:

    • Eden区Java 新对象的出生地(如果新创建的对象占用内存很大,则直接分配到老年代)。当 Eden 区内存不够的时候就会触发 MinorGC,对新生代区进行一次垃圾回收。

    • ServivorFrom区:上一次 GC 的幸存者,作为这一次 GC 的被扫描者。

    • ServivorTo区保留了一次 MinorGC 过程中的幸存者

      • MinorGC 的过程(复制->清空->互换)MinorGC 采用复制算法

        • 1: eden、 servicorFrom 复制到 ServicorTo,年龄+1。
          首先,把 Eden 和 ServivorFrom 区域中存活的对象复制到 ServicorTo 区域(如果有对象的年龄以及达到了老年的标准,则赋值到老年代区),同时把这些对象的年龄+1(如果 ServicorTo 不够位置了就放到老年区);

        • 2: 清空 eden、 servicorFrom

          ​ 然后,清空 Eden 和 ServicorFrom 中的对象;

        • 3: ServicorTo 和 ServicorFrom 互换

          ​ 最后, ServicorTo 和 ServicorFrom 互换,原 ServicorTo 成为下一次 GC 时的 ServicorFrom区。

  • 老年代

主要存放应用程序中生命周期长的内存对象。

​ 老年代的对象比较稳定,所以 MajorGC 不会频繁执行。在进行 MajorGC 前一般都先进行了一次 MinorGC,使得有新生代的对象晋身入老年代,导致空间不够用时才触发。当无法找到足够大的连续空间分配给新创建的较大对象时也会提前触发一次 MajorGC 进行垃圾回收腾出空间

​ MajorGC 采用标记清除算法:首先扫描一次所有老年代,标记出存活的对象,然后回收没有标记的对象。 MajorGC 的耗时比较长,因为要扫描再回收。 MajorGC 会产生内存碎片,为了减少内存损耗,我们一般需要进行合并或者标记出来方便下次直接分配。当老年代也满了装不下的时候,就会抛出 OOM(Out of Memory)异常。

  • !!!永久代

​ 指内存的永久保存区域,主要存放 Class 和 Meta(元数据)的信息,Class 在被加载的时候被放入永久区域, 它和和存放实例的区域不同,GC 不会在主程序运行期对永久区域进行清理。所以这也导致了永久代的区域会随着加载的 Class 的增多而胀满,最终抛出 OOM 异常。

!!!在JDK 1.8 的时候,HotSpot的永久代被彻底移除 ,被一个称为“元数据区”(元空间)的区域所取代。元空间的本质和永久代类似,元空间与永久代之间最大的区别在于: 元空间并不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制。 类的元数据放入 nativememory, 字符串池和类的静态变量放入 java 堆中, 这样可以加载多少类的元数据就不再由MaxPermSize 控制, 而由系统的实际可用空间来控制。

面试题:说一下堆栈的区别?

  1. **堆的物理地址分配是不连续的,性能较慢**;栈的物理地址分配是连续的,性能相对较快。
  2. 堆存放的是对象的实例和数组;栈存放的是局部变量,操作数栈,返回结果等。
  3. 堆是线程共享的;栈是线程私有的。

🌟JAVA8及以后,JVM内存分布:

![image-20230821101241186](/Users/donn/Library/Application Support/typora-user-images/image-20230821101241186.png)

面试题:Java 中 OutOfMemoryError和StackOverFlowError的区别?

  • OutOfMemoryError(内存溢出错误):当Java程序在运行过程中无法分配足够的内存空间时,就会抛出OutOfMemoryError。这种情况通常发生在创建过多的对象、持续大量的递归调用或者内存泄漏等情况下。如果系统中有大量的对象无法及时被垃圾回收器回收释放,就可能导致内存耗尽,从而触发OutOfMemoryError。

  • StackOverFlowError(栈溢出错误):当一个线程的方法调用堆栈超出了栈的最大深度限制时,就会抛出StackOverFlowError。这种情况通常发生在方法递归调用过多或者死循环嵌套等情况下。当方法调用的层级过深,栈空间被耗尽,就会触发StackOverFlowError。

总结起来,OutOfMemoryError指的是程序无法分配到足够的 堆内存 空间,而StackOverFlowError则是指方法调用链过于深入导致**栈空间溢出**。两者的触发条件和原因不同,但都提示了Java程序在内存管理或方法调用方面出现了问题,并且在处理上需要考虑相应的调整和优化。

1.4垃圾回收与算法

image-20230729200359311

1.4.1如何确定垃圾

1.4.1.1引用计数法

​ 一个对象如果没有任何与之关联的引用, 即他们的引用计数都为 0, 则说明对象不太可能再被用到,那么这个对象就是可回收对象。

1.4.1.2. 可达性分析

为了解决引用计数法的循环引用问题, Java 使用了可达性分析的方法。通过一系列的“GC roots”对象作为起点搜索。如果在“GC roots”和一个对象之间没有可达路径,则称该对象是不可达的。

GC Roots 是一组必须活跃的引用。用通俗的话来说,就是程序接下来通过直接引用或者间接引用,能够访问到的潜在被使用的对象。

要注意的是,不可达对象不等价于可回收对象, 不可达对象变为可回收对象至少要经过两次标记过程。两次标记后仍然是可回收对象,则将面临回收。

1.4.2垃圾回收算法

1.4.2.1 标记-清除算法(Mark-Sweep)

最基础的垃圾回收算法,分为两个阶段,标注和清除。标记阶段标记出所有需要回收的对象,清除阶段回收被标记的对象所占用的空间。如图

image-20230729204014222

从图中我们就可以发现,该算法最大的问题是内存碎片化严重,后续可能发生大对象不能找到可利用空间的问题。

1.4.2.2 复制算法(copying)

为了解决 Mark-Sweep 算法内存碎片化的缺陷而被提出的算法。按内存容量将内存划分为等大小的两块。每次只使用其中一块,当这一块内存满后将尚存活的对象复制到另一块上去,把已使用的内存清掉,如图:

image-20230729204457458

这种算法虽然实现简单,内存效率高,不易产生碎片,但是最大的问题是**可用内存被压缩到了原本的一半**。且存活对象增多的话, Copying 算法的效率会大大降低。

1.4.2.3 标记整理算法(Mark-Compact)

​ 结合了以上两个算法,为了避免缺陷而提出。标记阶段和 Mark-Sweep 算法相同, 标记后不是清理对象,而是将存活对象移向内存的一端。然后清除端边界外的对象。如图

image-20230729204701947

1.4.2.4 🌟分代收集算法

——根据对象销毁频率特点进行分区,各个分区采用合适的算法

分代收集法是目前大部分 JVM 所采用的方法,其核心思想是根据对象存活的不同生命周期将内存划分为不同的域,一般情况下将 GC 堆划分为老生代(Tenured/Old Generation)和新生代(YoungGeneration)。老生代的特点是每次垃圾回收时只有少量对象需要被回收,新生代的特点是每次垃圾回收时都有大量垃圾需要被回收,因此可以根据不同区域选择不同的算法。

1.4.3如今广泛采用的回收方法:

  • 新生代与复制算法

​ 目前大部分 JVM 的 GC 对于新生代都采取 Copying 算法,因为新生代中每次垃圾回收都要回收大部分对象,即要复制的操作比较少,但通常并不是按照 1: 1 来划分新生代。一般将新生代划分为一块较大的 Eden空间(存放新创建的对象) 和两个较小的 Survivor 空间(From Space, To Space,存放存活对象),每次使用Eden 空间和其中的一块 Survivor 空间,当进行回收时,将该两块空间中还存活的对象复制到另一块 Survivor 空间中。

  • 老年代与标记复制算法

​ 而老年代因为每次只回收少量对象,因而采用 Mark-Compact(标记整理) 算法。

1.4.4 🌟垃圾回收方法总结:!!!!!

  1. JAVA 虚拟机提到过的处于方法区的永生代(Permanet Generation), 它用来存储 class 类,常量,方法描述等。对永生代的回收主要包括废弃常量和无用的类
  2. 对象的内存分配主要在新生代的 Eden Space 和 Survivor Space 的 From Space(Survivor 目前存放对象的那一块),少数情况会直接分配到老生代(对象过大, To Space 区装不下)。
  3. 当新生代的 Eden Space 和 From Space 空间不足时就会发生一次 GC,进行 GC 后, EdenSpace 和 From Space 区的存活对象会被挪到 To Space,然后将 Eden Space 和 FromSpace 进行清理。
  4. 如果 To Space 无法足够存储某个对象(太大),则将这个对象存储到老生代
  5. 在进行 GC 后,使用的便是 Eden Space 和 To Space 了,如此反复循环。
  6. 当对象在 Survivor 区躲过一次 GC 后,其年龄就会+1。 默认情况下年龄到达 15 的对象会被移到老生代中

1.5 JAVA中 四种引用类型

1.5.1. 强引用

在 Java 中最常见的就是强引用, 把一个对象赋给一个引用变量,这个引用变量就是一个强引用。当一个对象被强引用变量引用时,它处于可达状态,它是不可能被垃圾回收机制回收的,即使该对象以后永远都不会被用到 JVM 也不会回收。因此强引用是造成 Java 内存泄漏的主要原因之一。

1.5.2. 软引用

软引用需要用 SoftReference 类来实现,对于只有软引用的对象来说,当系统内存足够时它不会被回收,当系统内存空间不足时它会被回收。软引用通常用在对内存敏感的程序中。

1.5.3. 弱引用

弱引用需要用 WeakReference 类来实现,它比软引用的生存期更短,对于只有弱引用的对象来说,只要垃圾回收机制一运行,不管 JVM 的内存空间是否足够,总会回收该对象占用的内存。

1.5.4. 虚引用

虚引用需要 PhantomReference 类来实现,它不能单独使用,必须和引用队列联合使用。 虚引用的主要作用是跟踪对象被垃圾回收的状态

1.6.GC 分代收集算法 VS 分区收集算法

1.6.1. 分代收集算法(1.4.2.4中提到过,只做介绍,分析请看前文)

​ 当前主流 VM 垃圾收集都采用”分代收集” (Generational Collection)算法, 这种算法会根据对象存活周期的不同将内存划分为几块, 如 JVM 中的 新生代、老年代、永久代, 这样就可以根据各年代特点分别采用最适当的 GC 算法

1.6.1.1. 在新生代-复制算法

​ 每次垃圾收集都能发现大批对象已死, 只有少量存活. 因此选用复制算法, 只需要付出少量存活对象的复制成本就可以完成收集.

1.6.1.2. 在老年代-标记整理算法

​ 因为对象存活率高、没有额外空间对它进行分配担保, 就必须采用“标记—清理”或“标记—整理” 算法来进行回收, 不必进行内存复制, 且直接腾出空闲内存.

1.6.2. 分区收集算法

分区收集算法产生背景:

在垃圾回收过程中,应用软件将处于一种Stop the World 的状态。在Stop the Word 状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成,如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。

​ 分区算法则将整个堆空间划分为连续的不同小区间, 每个小区间独立使用, 独立回收.减少应用程序被挂起的时间

​ 这样做的好处是可以控制一次回收多少个小区间 , 根据目标停顿时间, 每次合理地回收若干个小区间(而不是整个堆), 从而减少一次 GC 所产生的停顿。

由于分块进行垃圾回收,会导致额外的管理开销。

1.7.GC 垃圾收集器

java 虚拟中针对新生代和年老代分别提供了多种不同的垃圾收集器, JDK1.6 中 Sun HotSpot 虚拟机的垃圾收集器如下:

image-20230730161121359

1.7.1. Serial 垃圾收集器(单线程、 复制算法)

​ Serial 是最基本垃圾收集器,使用复制算法,曾经是JDK1.3.1 之前新生代唯一的垃圾收集器。 Serial 是一个单线程的收集器,它不但只会使用一个 CPU 或一条线程去完成垃圾收集工作,并且在进行垃圾收集的同时,必须暂停其他所有的工作线程,直到垃圾收集结束。Serial 垃圾收集器虽然在收集垃圾过程中需要暂停所有其他的工作线程,但是它简单高效,对于限定单个 CPU 环境来说,没有线程交互的开销,可以获得最高的单线程垃圾收集效率,因此 Serial垃圾收集器依然是 java 虚拟机运行在 Client 模式下默认的新生代垃圾收集器。

1.7.2. ParNew 垃圾收集器(Serial+多线程)

​ ParNew 垃圾收集器其实是 Serial 收集器的多线程版本,也使用复制算法,除了使用多线程进行垃圾收集之外,其余的行为和 Serial 收集器完全一样, ParNew 垃圾收集器在垃圾收集过程中同样也要暂停所有其他的工作线程。

​ ParNew 收集器默认开启和 CPU 数目相同的线程数,可以通过-XX:ParallelGCThreads 参数来限制垃圾收集器的线程数。ParNew 虽然是除了多线程外和Serial 收集器几乎完全一样,但是ParNew垃圾收集器是很多 java虚拟机运行在 Server 模式下新生代的默认垃圾收集器。

1.7.3. Parallel Scavenge 收集器(多线程复制算法、高效)

​ Parallel Scavenge 收集器也是一个新生代垃圾收集器,同样使用复制算法,也是一个多线程的垃圾收集器, 它重点关注的是程序达到一个可控制的吞吐量(Thoughput, CPU 用于运行用户代码的时间/CPU 总消耗时间,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间)),高吞吐量可以最高效率地利用 CPU 时间,尽快地完成程序的运算任务,主要适用于在后台运算而不需要太多交互的任务。 自适应调节策略也是 ParallelScavenge 收集器与 ParNew 收集器的一个重要区别。

1.7.4. Serial Old 收集器(单线程标记整理算法 )

​ Serial Old 是 Serial 垃圾收集器年老代版本,它同样是个单线程的收集器,使用标记-整理算法,这个收集器也主要是运行在 Client端 默认的 java 虚拟机默认的年老代垃圾收集器。

1.7.5. Parallel Old 收集器(多线程标记整理算法)

​ Parallel Old 收集器是Parallel Scavenge的年老代版本,使用多线程的标记-整理算法,在 JDK1.6才开始提供。在 JDK1.6 之前,新生代使用 ParallelScavenge 收集器只能搭配年老代的 Serial Old 收集器,只能保证新生代的吞吐量优先,无法保证整体的吞吐量, Parallel Old 正是为了在年老代同样提供吞吐量优先的垃圾收集器, 如果系统对吞吐量要求比较高,可以优先考虑新生代 Parallel Scavenge和年老代 Parallel Old 收集器的搭配策略。

1.7.6. CMS 收集器(多线程标记清除算法)

Concurrent mark sweep(CMS)收集器是一种年老代垃圾收集器,其最主要目标是获取最短垃圾回收停顿时间, 和其他年老代使用标记-整理算法不同,它使用多线程的标记-清除算法。最短的垃圾收集停顿时间可以为交互比较高的程序提高用户体验。CMS 工作机制相比其他的垃圾收集器来说更复杂,整个过程分为以下 4 个阶段:

1.7.6.1. 初始标记

​ 只是标记一下 GC Roots 能直接关联的对象,速度很快,仍然需要暂停所有的工作线程

1.7.6.2. 并发标记

​ 进行 GC Roots 跟踪的过程,和用户线程一起工作,不需要暂停工作线程

1.7.6.3. 重新标记

​ 为了修正在并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,仍然需要暂停所有的工作线程

1.7.6.4. 并发清除

​ 清除 GC Roots 不可达对象,和用户线程一起工作,不需要暂停工作线程。**由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作, 所以总体上来看CMS 收集器的内存回收和用户线程是一起并发地执行。**

1.7.7. G1 收集器

—CMS收集器的升级版

Garbage first 垃圾收集器是目前垃圾收集器理论发展的最前沿成果,相比与 CMS 收集器, G1 收集器两个最突出的改进是:

基于标记-整理算法,不产生内存碎片。

  1. 可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。G1 收集器避免全区域垃圾收集,它把堆内存划分为大小固定的几个独立区域,并且跟踪这些区域的垃圾收集进度,同时在后台维护一个优先级列表,每次根据所允许的收集时间, 优先回收垃圾最多的区域。
  2. 区域划分和优先级区域回收机制,确保 G1 收集器可以在有限时间获得最高的垃圾收集效率

————————————

G1垃圾收集器的目标是在不同应用场景中追求高吞吐量和低停顿之间的最佳平衡。

G1将整个堆分成相同大小的分区(Region),有四种不同类型的分区:Eden、Survivor、Old和Humongous。分区的大小取值范围为 1M 到 32M,都是2的幂次方。分区大小可以通过-XX:G1HeapRegionSize参数指定。Humongous区域用于存储大对象。G1规定只要大小超过了一个分区容量一半的对象就认为是大对象。

G1 收集器对各个分区回收所获得的空间大小和回收所需时间的经验值进行排序,得到一个优先级列表,每次根据用户设置的最大回收停顿时间,优先回收价值最大的分区。

特点:可以由用户指定期望的垃圾收集停顿时间。

G1 收集器的回收过程分为以下几个步骤:

  • 初始标记。暂停所有其他线程,记录直接与 GC Roots 直接相连的对象,耗时较短 。
  • 并发标记。从GC Roots开始对堆中对象进行可达性分析,找出要回收的对象,耗时较长,不过可以和用户程序并发执行。
  • 最终标记。需对其他线程做短暂的暂停,用于处理并发标记阶段对象引用出现变动的区域。
  • 筛选回收。对各个分区的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,然后把决定回收的分区的存活对象复制到空的分区中,再清理掉整个旧的分区的全部空间。这里的操作涉及存活对象的移动,会暂停用户线程,由多条收集器线程并行完成。

1.8. JAVA IO/NIO

1.8.1常见I/O模型

1.8.1.1 阻塞 IO 模型

​ 最传统的一种 IO 模型,即在读写数据过程中会发生阻塞现象。当用户线程发出 IO 请求之后,内核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞状态,用户线程交出 CPU。当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户线程,用户线程才解除 block 状态。典型的阻塞 IO 模型的例子为: data = socket.read();如果数据没有就绪,就会一直阻塞在 read 方法。

——用户线程得不到数据就会阻塞(放弃CPU),直到数据就绪

1.8.1.2. 非阻塞 IO 模型

​ 当用户线程发起一个 read 操作后,并不需要等待,而是马上就得到了一个结果。 如果结果是一个error 时,它就知道数据还没有准备好,于是它可以再次发送 read 操作。一旦内核中的数据准备好了,并且又再次收到了用户线程的请求,那么它马上就将数据拷贝到了用户线程,然后返回。所以事实上,在非阻塞 IO 模型中,用户线程需要不断地询问内核数据是否就绪,也就说非阻塞 IO不会交出 CPU,而会一直占用 CPU。 典型的非阻塞 IO 模型一般如下:

——用户线程得不到数据会一直询问(一直占用CPU),直到获取数据

⚠️非阻塞IO在获取不到数据时会不断询问,导致CPU占用率很高

1.8.1.3. 多路复用 IO 模型

​ 多路复用 IO 模型是目前使用得比较多的模型。 Java NIO 实际上就是多路复用 IO。
​ 在多路复用 IO模型中,会有一个线程不断去轮询多个 socket 的状态,只有当 socket 真正有读写事件时,才真正调用实际的 IO 读写操作。因为在多路复用 IO 模型中,只需要使用一个线程就可以管理多个socket,系统不需要建立新的进程或者线程,也不必维护这些线程和进程,并且只有在真正有socket 读写事件进行时,才会使用 IO 资源,所以它大大减少了资源占用。在 Java NIO 中,是通过 selector.select()去查询每个通道是否有到达事件,如果没有事件,则一直阻塞在那里,因此这种方式会导致用户线程的阻塞。多路复用 IO 模式,通过一个线程就可以管理多个 socket,只有当socket 真正有读写事件发生才会占用资源来进行实际的读写操作。因此,多路复用 IO 比较适合连接数比较多的情况。

⚠️多路复用 IO 模型是通过轮询的方式来检测是否有事件到达,并且对到达的事件逐一进行响应。因此对于多路复用 IO 模型来说,一旦事件响应体很大,那么就会导致后续的事件迟迟得不到处理,并且会影响新的事件轮询。

1.8.1.4. 信号驱动 IO 模型

​ 在信号驱动 IO 模型中,当用户线程发起一个 IO 请求操作,会给对应的 socket 注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用 IO 读写操作来进行实际的 IO 请求操作。

⚠️信号是告诉你数据已经好了,用户线程自己来调用

1.8.1.5. 异步 IO 模型

​ 异步 IO 模型才是最理想的 IO 模型,在异步 IO 模型中,当用户线程发起 read 操作之后,立刻就可以开始去做其它的事。而另一方面,从内核的角度,当它受到一个 asynchronous read 之后,它会立刻返回,说明 read 请求已经成功发起了,因此不会对用户线程产生任何 block。然后,内核会等待数据准备完成,然后将数据拷贝到用户线程,当这一切都完成之后,内核会给用户线程发送一个信号,告诉它 read 操作完成了。也就说用户线程完全不需要实际的整个 IO 操作是如何进行的, 只需要先发起一个请求,当接收内核返回的成功信号时表示 IO 操作已经完成,可以直接去使用数据了。

​ 也就说在异步 IO 模型中, IO 操作的两个阶段都不会阻塞用户线程,这两个阶段都是由内核自动完成,然后发送一个信号告知用户线程操作已完成。用户线程中不需要再次调用 IO 函数进行具体的读写。这点是和信号驱动模型有所不同的,在信号驱动模型中,当用户线程接收到信号表示数据已经就绪,然后需要用户线程调用 IO 函数进行实际的读写操作;而在异步 IO 模型中,收到信号表示 IO 操作已经完成,不需要再在用户线程中调用 IO 函数进行实际的读写操作。

⚠️内核帮你读了数据并且复制给你了,你什么不被耽误就收到了数据!

1.8.2.Java NIO

NIO 主要有三大核心部分: Channel(通道), Buffer(缓冲区), Selector。*传统 IO 基于字节流和字符流进行操作*, 而 NIO 基于 Channel 和 Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。 Selector(选择区)用于监听多个通道的事件(比如:连接打开,数据到达)。因此,单个线程可以监听多个数据通道。

image-20230731140704880

🌟NIO 和传统 IO 之间第一个最大的区别是, IO 是面向流的, NIO 是面向缓冲区的。

1.8.2.1. NIO 的缓冲区

​ Java IO 面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何地方。此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的数据, 需要先将它缓存到一个缓冲区。 NIO 的缓冲导向方法不同。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查该缓冲区中是否包含您需要处理的数据。而且需确保当更多的数据读入缓冲区时,不能覆盖缓冲区里尚未处理的数据。

1.8.2.2. NIO 的非阻塞

​ IO 的各种流是阻塞的。这意味着,当一个线程调用 read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 NIO 的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞 IO 的空闲时间用于在其它通道上执行 IO 操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。

1.8.2.3. Channel

首先说一下 Channel,国内大多翻译成“通道”。 Channel 和 IO 中的 Stream(流)是差不多一个等级的。 只不过 Stream 是单向的,譬如: InputStream, OutputStream, 而 Channel 是双向的,既可以用来进行读操作,又可以用来进行写操作

NIO 中的 Channel 的主要实现有:

  1. FileChannel

  2. DatagramChannel

  3. SocketChannel

  4. ServerSocketChannel

这里看名字就可以猜出个所以然来:分别可以对应文件 IO、 UDP 和 TCP(Server 和 Client)。

1.8.2.4. Buffer

Buffer,故名思意, 缓冲区,实际上是一个容器,是一个连续数组。 Channel 提供从文件、网络读取数据的渠道,但是读取或写入的数据都必须经由 Buffer。

image-20230731141618555
1.8.2.5. Selector

​ Selector 类是 NIO 的核心类, Selector 能够检测多个注册的通道上是否有事件发生,如果有事件发生,便获取事件然后针对每个事件进行相应的响应处理。这样一来,只是用一个单线程就可以管理多个通道,也就是管理多个连接。这样使得只有在连接真正有读写事件发生时,才会调用函数来进行读写,就大大地减少了系统开销,并且不必为每个连接都创建一个线程,不用去维护多个线程,并且避免了多线程之间的上下文切换导致的开销。

1.9.JVM 类加载机制

JVM 类加载机制分为五个部分:加载,验证,准备,解析,初始化,下面我们就分别来看一下这五个过程。

image-20230731230933568

1.9.1. 加载

加载阶段会做3件事情:

  • 通过一个类的全限定名来获取定义此类的二进制字节流。
  • 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
  • 在Java堆中生成一个代表这个类的java.lang.Class对象,作为对方法区中这些数据的访问入口。

​ 注意这里不一定非得要从一个 Class 文件获取,这里既可以从 ZIP 包中读取(比如从 jar 包和 war 包中读取),也可以在运行时计算生成(动态代理),也可以由其它文件生成(比如将 JSP 文件转换成对应的 Class 类)。

1.9.2. 验证

这一阶段的主要目的是为了确保 Class 文件的字节流中包含的信息是否符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。

1.9.3. 准备

–静态变量初始化为0、null等默认值,只有final修饰的变量在此阶段就能被赋予给定的值

准备阶段是正式为类变量分配内存并设置类变量的初始值阶段,即**在方法区中**分配这些变量所使用的内存空间。注意这里所说的初始值概念,比如一个类变量定义为:

1
public static int v = 8080;

实际上变量 v 在准备阶段过后的初始值为 0 而不是 8080, 将 v 赋值为 8080 的 put static 指令是程序被编译后, 存放于类构造器方法之中。

⚠️但是注意如果声明为:

1
public static final int v = 8080;

在编译阶段会为 v 生成 ConstantValue 属性,在准备阶段虚拟机会根据 ConstantValue 属性将 v赋值为 8080。

1.9.4. 解析

——在内存中实实在在地为变量分配内存空间

解析阶段是指虚拟机将常量池中的符号引用替换为直接引用的过程。符号引用就是 class 文件中的:

  1. CONSTANT_Class_info

  2. CONSTANT_Field_info

  3. CONSTANT_Method_info 等类型的常量

1.9.4.1. 符号引用
  • 符号引用与虚拟机实现的布局无关, 引用的目标并不一定要已经加载到内存中各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须是一致的,因为符号引用的字面量形式明确定义在 Java 虚拟机规范的 Class 文件格式中。
1.9.4.2. 直接引用
  • 直接引用可以是指向目标的指针,相对偏移量或是一个能间接定位到目标的句柄。如果有了直接引用,那引用的目标必定已经在内存中存在。

1.9.5. 初始化

初始化阶段是类加载最后一个阶段,前面的类加载阶段之后,除了在加载阶段可以自定义类加载器以外,其它操作都由 JVM 主导。到了初始阶段,才开始真正执行类中定义的 Java 程序代码。

1.9.5.1 类构造器 < c l i e n t >

​ 🌟初始化阶段是执行类构造器方法的过程。 方法是由编译器自动收集类中的类变量的赋值操作静态语句块中的语句合并而成的。虚拟机会保证子方法执行之前,父类的方法已经执行完毕, 如果一个类中没有对静态变量赋值也没有静态语句块,那么编译器可以不为这个类生成()方法。

⚠️注意以下几种情况不会执行类初始化:
  1. 通过子类引用父类的静态字段,只会触发父类的初始化,而不会触发子类的初始化。
  2. 定义对象数组,不会触发该类的初始化。
  3. 常量在编译期间会存入调用类的常量池中,本质上并没有直接引用定义常量的类,不会触发定义常量所在的类。
  4. 通过类名获取 Class 对象,不会触发类的初始化。
  5. 通过 Class.forName 加载指定类时,如果指定参数 initialize 为 false 时,也不会触发类初始化,其实这个参数是告诉虚拟机,是否要对类进行初始化。
  6. 通过 ClassLoader 默认的 loadClass 方法,也不会触发初始化动作。
1.9.5.2 类加载器
1.9.5.2.1. 启动类加载器(Bootstrap ClassLoader)

​ 负责加载 JAVA_HOME\lib 目录中的, 或通过-Xbootclasspath 参数指定路径中的, 且被虚拟机认可(按文件名识别, 如 rt.jar) 的类。

1.9.5.2.2. 扩展类加载器(Extension ClassLoader)

​ 负责加载 JAVA_HOME\lib\ext 目录中的,或通过 java.ext.dirs 系统变量指定路径中的类库。

1.9.5.2.3. 应用程序类加载器(Application ClassLoader):

​ 负责加载用户路径(classpath)上的类库。JVM 通过双亲委派模型进行类的加载, 当然我们也可以通过继承 java.lang.ClassLoader实现自定义的类加载器。

image-20230731232552332
1.9.5.3 双亲委派

​ 当一个类收到了⚠️未知的类加载请求,他首先不会尝试自己去加载这个类,而是把这个请求委派给父类去完成,每一个层次类加载器都是如此,因此所有的加载请求都应该传送到启动类加载其中,只有当父类加载器反馈自己无法完成这个请求的时候(在它的加载路径下没有找到所需加载的Class), 子类加载器才会尝试自己去加载。

​ 采用双亲委派的一个好处是比如加载位于 rt.jar 包中的类 java.lang.Object,不管是哪个加载器加载这个类,最终都是委托给顶层的启动类加载器进行加载,这样就保证了使用不同的类加载器最终得到的都是同样一个 Object 对象。

为什么需要双亲委派模型?

双亲委派模型的好处: 如果没有双亲委派模型而是由各个类加载器自行加载的话,如果用户编写了一个java.lang.Object的同名类并放在ClassPath中,多个类加载器都去加载这个类到内存中,系统中将会出现多个不同的Object类,那么类之间的比较结果及类的唯一性将无法保证。

🌟双亲委派流程图:
image-20230911091721446

💘探究:ClassLoader详解:

​ ClassLoader是用来查找Class的,负责将 **Class 的字节码(.class文件)**形式转换成内存形式的 Class 对象。

​ 每个 Class 对象的内部都有一个 classLoader 字段来标识自己是由哪个 ClassLoader 加载的。ClassLoader 就像一个容器,里面装了很多已经加载的 Class 对象。

​ ClassLoader的内部结构如下,主要有三个关键方法:

  • loadClass()
  • findClass()
  • defineClass()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class ClassLoader {

// 加载入口,定义了双亲委派规则
Class loadClass(String name) {
// 先看看自己是否「已经」加载过了
Class t = this.findFromLoaded(name);
if(t == null) {
// 自己没加载过,则交给双亲
t = this.parent.loadClass(name)
}
if(t == null) {
// 双亲都不行,只能靠自己了
t = this.findClass(name);
}
return t;
}

// 交给子类自己去实现
Class findClass(String name) {
throw ClassNotFoundException();
}

// 组装Class对象
Class defineClass(byte[] code, String name) {
//将类的字节码转换为Class对象并返回
return buildClassFromCode(code, name);
}
}

class CustomClassLoader extends ClassLoader {

Class findClass(String name) {
// 寻找字节码
byte[] code = findCodeFromSomewhere(name);
// 组装Class对象
return this.defineClass(code, name);
}
}

1.10.对象创建过程

  1. 类加载检查:JVM遇到一条new指令时,先检查能不能在常量池中定位到该类的符号引用,并检查这个符号引用代表的类是否已被加载、解析和初始化。如果没有就要先进行类加载。类已被加载就通过检查。
  2. 分配内存:类加载检查通过后JVM为新对象分配内存,对象所需的内存大小在类加载完成后就确定了,JVM会在堆中按照指针碰撞或空闲列表的方式为对象划分出一块空间,选择哪种方式会根据垃圾收集器的算法而定。此外,内存分配还要保证线程安全,JVM采用CAS+失败重试或TLAB的方式保证线程安全。
    1. CAS+失败重试:乐观锁的一种实现,每次占用资源不加锁,而是不断尝试占用。
    2. TLAB:线程创建时预先在堆中给线程分配一块内存,称为TLAB,专门用来存放该线程运行过程中创建的对象,而TLAB满了时,采用上述CAS在堆的其它内存中分配
  3. 初始化:分配到的内存空间都初始化为零值,通过这个操作保证了对象的字段可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
  4. 设置对象头:在对象头中设置这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的 GC 分代年龄、是否启用偏向锁等信息。
  5. 执行init方法:初始化对象,即按照程序员写的构造方法给对象进行初始化。

1.11.执行main方法的过程(例🌰)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Application {
public static void main(String[] args) {
Person p = new Person("大B");
p.getName();
}
}

class Person {
public String name;

public Person(String name) {
this.name = name;
}

public String getName() {
return this.name;
}
}
  1. 编译Application.java后得到 Application.class 后,执行这个class文件,系统会启动一个 JVM 进程,从类路径中找到一个名为 Application.class 的二进制文件,将 Application 类信息加载到运行时数据区的方法区内,这个过程叫做类的加载。
  2. JVM 找到 Application 的主程序入口,执行main方法。
  3. main方法的第一条语句为 Person p = new Person("大B") ,就是让 JVM 创建一个Person对象(见1.10),但是这个时候方法区中是没有 Person 类的信息的,所以 JVM 马上加载 Person 类,把 Person 类的信息放到方法区中。
  4. 加载完 Person 类后,JVM 在堆中分配内存给 Person 对象,然后调用构造函数初始化 Person 对象,这个 Person 对象持有指向方法区中的 Person 类的类型信息的引用。
  5. 执行p.getName()时,JVM 根据 p 的引用找到 p 所指向的对象,然后根据此对象持有的引用定位到方法区中 Person 类的类型信息的方法表,获得 getName() 的字节码地址。
  6. 执行getName()方法。

🌟类的实例化顺序?

  1. 父类中的static代码块,当前类的static代码块
  2. 父类的普通代码块
  3. 父类的构造函数
  4. 当前类普通代码块
  5. 当前类的构造函数

🌟如何判断一个对象是否存活?

  1. 引用计数法

​ 这种方法不能解决对象的循环引用问题

  1. 可达性分析:

​ 通过GC Root对象为起点,从这些节点向下搜索,搜索所走过的路径叫引用链,当一个对象到GC Root没有任何的引用链相连时,说明这个对象是不可用的。

什么是GC Roots的对象?

  • 虚拟机栈中引用的对象
  • 本地方法栈中Native方法引用的对象
  • 方法区中类静态属性引用的对象
  • 方法区中常量引用的对象

🌟什么情况下类会被卸载?

需要同时满足以下 3 个条件类才可能会被卸载 :

  • 该类所有的实例都已经被回收
  • 加载该类的类加载器已经被回收。
  • 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

虚拟机可以对满足上述 3 个条件的类进行回收,但不一定会进行回收。

🌟Minor GC 和 Full GC的区别?

  • Minor GC:回收新生代,因为新生代对象存活时间很短,因此 Minor GC会频繁执行,执行的速度一般也会比较快。
  • Full GC:回收老年代和新生代,老年代的对象存活时间长,因此 Full GC 很少执行,执行速度会比 Minor GC 慢很多。

🌟内存的分配策略?

对象优先在 Eden 分配

  • 大多数情况下,对象在新生代 Eden 上分配,Eden 空间不够时,触发 Minor GC

大对象直接进入老年代

  • 大对象是指需要连续内存空间的对象,最典型的大对象有长字符串和大数组。可以设置JVM参数 -XX:PretenureSizeThreshold,大于此值的对象直接在老年代分配。

长期存活的对象进入老年代

  • 通过参数 -XX:MaxTenuringThreshold 可以设置对象进入老年代的年龄阈值。对象在Survivor区每经过一次 Minor GC,年龄就增加 1 岁,当它的年龄增加到一定程度,就会被晋升到老年代中。

动态对象年龄判定

  • 并非对象的年龄必须达到 MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 中相同年龄所有对象大小的总和大于 Survivor 空间的一半,则年龄大于或等于该年龄的对象可以直接进入老年代,无需达到 MaxTenuringThreshold 年龄阈值。

空间分配担保

  • 在发生 Minor GC 之前,虚拟机先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果条件成立的话,那么 Minor GC 是安全的。如果不成立的话虚拟机会查看 HandlePromotionFailure 的值是否允许担保失败。如果允许,那么就会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次 Minor GC;如果小于,或者 HandlePromotionFailure 的值为不允许担保失败,那么就要进行一次 Full GC

🌟对象头了解吗?

Java 内存中的对象由以下三部分组成:对象头、实例数据和对齐填充字节。

而对象头由以下三部分组成:mark word、指向类信息的指针和数组长度(数组才有)。

mark word包含:对象的哈希码、分代年龄和锁标志位

对象的实例数据就是 Java 对象的属性和值。

对齐填充字节:因为JVM要求对象占的内存大小是 8bit 的倍数,因此后面有几个字节用于把对象的大小补齐至 8bit 的倍数。

内存对齐的主要作用是:

  1. 平台原因:不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  2. 性能原因:经过内存对齐后,CPU的内存访问速度大大提升。

本博客对以下文章有参考借鉴,十分感谢这些作者的文章🙏: